Optimal Control of Fuel Processing System Using Generalized Linear Quadratic Gaussian and Loop Transfer Function Recovery Method
نویسندگان
چکیده
This paper originally proposes an optimal control system which consists of both feedforward and statefeedback controllers using a generalized linear quadratic Gaussian and loop transfer recovery (GLQG/LTR) method. The control objective is focused on the regulatory performances of output vector in response to a desired stack current command in face of load variation. The proposed method provides another degree-of-freedom in optimal controller design and makes the compensated system have a prescribed degree of stability. Finally, the numerical simulations of a compensated fuel processing system reveal that the proposed method achieves better performance and robustness properties in both time-domain and frequency-domain responses than those obtained by the traditional LQ Method.
منابع مشابه
Generalized Linear Quadratic Gaussian and Loop Transfer Recovery Design of F-16 Aircraft Lateral Control System
recovery method has been quite popular for aircraft control system design. In the proposed method we derive an optimal control law to minimize a generalized linear quadratic performance index to achieve better recovery quality in the LTR process and better some performance in time-domain responses and frequency-domain responses as well. The resulting controller can achieve a prescribed degree o...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملAn extension of the linear quadratic Gaussian-loop transfer recovery procedure
The linear quadratic Gaussian-loop transfer recovery procedure is a classical method to desensibilise a system in closed loop with respect to disturbances and system uncertainty. Here an extension is discussed, which avoids the usual loss of performance in LTR, and which is also applicable for non-minimum phase systems. It is also shown how the idea can be extended to other control structures. ...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کامل